If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-32=0
a = 10; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·10·(-32)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*10}=\frac{0-16\sqrt{5}}{20} =-\frac{16\sqrt{5}}{20} =-\frac{4\sqrt{5}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*10}=\frac{0+16\sqrt{5}}{20} =\frac{16\sqrt{5}}{20} =\frac{4\sqrt{5}}{5} $
| -9+1/2b=-5 | | 7(x-4)+2(x-8)+(x-5)=2x-1 | | 10p=9 | | 3(x-3)^2=15 | | -8-2/5x=1/29(x-7) | | 5x-(6x+4)=x-5 | | 4n-14=56 | | 11b=9 | | 1.5=x/6 | | X^4+2x^2-19=0 | | 4^x+3=124 | | 3y-6+2y=9y-2 | | 3.75+1.75=y | | 4(2×a)=24 | | 180=x+44-3x | | (3.14*x^2*9)/3=36 | | -8x-3=10=3x | | r3= 1.6 | | 2(x-5)^2-8=-170 | | 6x+36=78 | | I2x+3I+11=5 | | -2(3x-1)=13-2x | | 7x-28=3(3x-7) | | x+16=2x+10 | | Q=100p^-2 | | 0.8k+8=0.7k+1 | | 30=22x-2 | | 30-6a=-3(5+7a)-5 | | 11-6x+x/4=0 | | 4x+40=100+2x | | 0=11-6x+x/4 | | 39=u/3+16 |